Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38541569

RESUMO

This study explores the optical and electrochemical properties of a ZnO coating layer deposited on a nanoporous alumina structure (NPAS) for potential multifunctional applications. The NPAS, synthesized through an electrochemical anodization process, displays well-defined nanochannels with a high aspect ratio (~3000). The ZnO coating, achieved via atomic layer deposition, enables the tuning of the pore diameter and porosity of the NPAS, thereby influencing both the optical and electrochemical interfacial properties. A comprehensive characterization using photoluminescence, spectroscopy ellipsometry and impedance spectroscopy (with the sample in contact with NaCl solutions) provides insights into optical and electrochemical parameters, including the refractive index, absorption coefficient, and electrolyte-ZnO/NPAS interface processes. This research demonstrates potential for tailoring the optical and interfacial properties of nanoporous structures by selecting appropriate coating materials, thus opening avenues for their utilization in various technological applications.

2.
ACS Omega ; 8(43): 40087-40098, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37929086

RESUMO

In the current energy crisis scenario, the development of renewable energy forms such as energy storage systems among the supercapacitors is an urgent need as a tool for environmental protection against increasing pollution. In this work, we have designed a novel 3D nanostructured silver electrode through an antireplica/replica template-assisted procedure. The chemical surface and electrochemical properties of this novel 3D electrode have been studied in a 5 M KOH electrolyte. Microstructural characterization and compositional analysis were studied by SEM, energy-dispersive X-ray spectroscopy, XRD technique, and Kripton adsorption at -198 °C, together with cyclic voltammetry and galvanostatic charge-discharge cycling measurements, Coulombic efficiency, cycle stability, and their leakage current drops, in addition to the self-discharge and electrochromoactive behavior, were performed to fully characterize the 3D nanostructured electrode. Large areal capacitance value of 0.5 F/cm2 and Coulombic efficiency of 97.5% are obtained at a current density of 6.4 mA/cm2 for a voltage window of 1.2 V (between -0.5 and 0.8 V). The 3D nanostructured silver electrode exhibits excellent capacitance retention (95%) during more than 2600 cycles, indicating a good cyclic stability. Additionally, the electrode delivers a high energy density of around 385.87 µWh/cm2 and a power density value of 3.82 µW/cm2 and also displays an electrochromoactive behavior. These experimental results strongly support that this versatile combined fabrication procedure is a suitable strategy for improving the electrochemical performances of 3D nanostructured silver electrodes for applications as micro-supercapacitors or in electrochemical devices.

3.
Micromachines (Basel) ; 14(4)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37421072

RESUMO

Optical characterization of nanoporous alumina-based structures (NPA-bSs), obtained by ALD deposition of a thin conformal SiO2 layer on two alumina nanosupports with different geometrical parameters (pore size and interpore distance), was performed by two noninvasive and nondestructive techniques such as spectroscopic ellipsometry (SE) and photoluminescence (Ph) spectra. SE measurements allow us to estimate the refraction index and extinction coefficient for the studied samples and their dependence with wavelength for the 250-1700 nm interval, showing the effect of sample geometry and cover-layer material (SiO2, TiO2, or Fe2O3), which significantly affect the oscillatory character of both parameters, as well as changes associated with the light incidence angle, which are attributed to surface impurities and inhomogeneity. Photoluminescence curves exhibit a similar shape independently of sample pore-size/porosity, but they seem to affect intensity values. This analysis shows the potential application of these NPA-bSs platforms to nanophotonics, optical sensing, or biosensing.

4.
Int J Mol Sci ; 24(8)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37108198

RESUMO

Tuning and controlling the magnetic properties of nanomaterials is crucial to implement new and reliable technologies based on magnetic hyperthermia, spintronics, or sensors, among others. Despite variations in the alloy composition as well as the realization of several post material fabrication treatments, magnetic heterostructures as ferromagnetic/antiferromagnetic coupled layers have been widely used to modify or generate unidirectional magnetic anisotropies. In this work, a pure electrochemical approach has been used to fabricate core (FM)/shell (AFM) Ni@(NiO,Ni(OH)2) nanowire arrays, avoiding thermal oxidation procedures incompatible with integrative semiconductor technologies. Besides the morphology and compositional characterization of these core/shell nanowires, their peculiar magnetic properties have been studied by temperature dependent (isothermal) hysteresis loops, thermomagnetic curves and FORC analysis, revealing the existence of two different effects derived from Ni nanowires' surface oxidation over the magnetic performance of the array. First of all, a magnetic hardening of the nanowires along the parallel direction of the applied magnetic field with respect their long axis (easy magnetization axis) has been found. The increase in coercivity, as an effect of surface oxidation, has been observed to be around 17% (43%) at 300 K (50 K). On the other hand, an increasing exchange bias effect on decreasing temperature has been encountered when field cooling (3T) the oxidized Ni@(NiO,Ni(OH)2) nanowires below 100 K along their parallel lengths.


Assuntos
Nanoporos , Nanofios , Nanofios/química , Óxido de Alumínio , Níquel/química , Nanotecnologia/métodos
5.
Nanomaterials (Basel) ; 11(12)2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34947752

RESUMO

Geometrically modulated magnetic nanowires are a simple yet efficient strategy to modify the magnetic domain wall propagation since a simple diameter modulation can achieve its pinning during the nanowire magnetization reversal. However, in dense systems of parallel nanowires, the stray fields arising at the diameter interface can interfere with the domain wall propagation in the neighboring nanowires. Therefore, the magnetic behavior of diameter-modulated nanowire arrays can be quite complex and depending on both short and long-range interaction fields, as well as the nanowire geometric dimensions. We applied the first-order reversal curve (FORC) method to bi-segmented Ni nanowire arrays varying the wide segment (45-65 nm diameter, 2.5-10.0 µm length). The FORC results indicate a magnetic behavior modification depending on its length/diameter aspect ratio. The distributions either exhibit a strong extension along the coercivity axis or a main distribution finishing by a fork feature, whereas the extension greatly reduces in amplitude. With the help of micromagnetic simulations, we propose that a low aspect ratio stabilizes pinned domain walls at the diameter modulation during the magnetization reversal. In this case, long-range axial interaction fields nucleate a domain wall at the nanowire extremities, while short-range ones could induce a nucleation at the diameter interface. However, regardless of the wide segment aspect ratio, the magnetization reversal is governed by the local radial stray fields of the modulation near null magnetization. Our findings demonstrate the capacity of distinguishing between complex magnetic behaviors involving convoluted interaction fields.

6.
Nanomaterials (Basel) ; 11(11)2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34835841

RESUMO

Magnetic nanomaterials are of great interest due to their potential use in data storage, biotechnology, or spintronic based devices, among others. The control of magnetism at such scale entails complexing the nanostructures by tuning their composition, shape, sizes, or even several of these properties at the same time, in order to search for new phenomena or optimize their performance. An interesting pathway to affect the dynamics of the magnetization reversal in ferromagnetic nanostructures is to introduce geometrical modulations to act as nucleation or pinning centers for the magnetic domain walls. Considering the case of 3D magnetic nanowires, the modulation of the diameter across their length can produce such effect as long as the segment diameter transition is sharp enough. In this work, diameter modulated Fe67Co33 ferromagnetic nanowires have been grown into the prepatterned diameter modulated nanopores of anodized Al2O3 membranes. Their morphological and compositional characterization was carried out by electron-based microscopy, while their magnetic behavior has been measured on both the nanowire array as well as for individual bisegmented nanowires after being released from the alumina template. The magnetic hysteresis loops, together with the evaluation of First Order Reversal Curve diagrams, point out that the magnetization reversal of the bisegmented FeCo nanowires is carried out in two steps. These two stages are interpreted by micromagnetic modeling, where a shell of the wide segment reverses its magnetization first, followed by the reversal of its core together with the narrow segment of the nanowire at once.

7.
Nanomaterials (Basel) ; 11(9)2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34578598

RESUMO

Nowadays, numerous works regarding nanowires or nanotubes are being published, studying different combinations of materials or geometries with single or multiple layers. However, works, where both nanotube and nanowires are forming complex structures, are scarcer due to the underlying difficulties that their fabrication and characterization entail. Among the specific applications for these nanostructures that can be used in sensing or high-density magnetic data storage devices, there are the fields of photonics or spintronics. To achieve further improvements in these research fields, a complete understanding of the magnetic properties exhibited by these nanostructures is needed, including their magnetization reversal processes and control of the magnetic domain walls. In order to gain a deeper insight into this topic, complex systems are being fabricated by altering their dimensions or composition. In this work, a successful process flow for the additive fabrication of core/shell nanowires arrays is developed. The core/shell nanostructures fabricated here consist of a magnetic nanowire nucleus (Fe56Co44), grown by electrodeposition and coated by a non-magnetic SiO2 layer coaxially surrounded by a magnetic Fe3O4 nanotubular coating both fabricated by means of the Atomic Layer Deposition (ALD) technique. Moreover, the magnetization reversal processes of these coaxial nanostructures and the magnetostatic interactions between the two magnetic components are investigated by means of standard magnetometry and First Order Reversal Curve methodology. From this study, a two-step magnetization reversal of the core/shell bimagnetic nanostructure is inferred, which is also corroborated by the hysteresis loops of individual core/shell nanostructures measured by Kerr effect-based magnetometer.

8.
Materials (Basel) ; 14(17)2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34501141

RESUMO

Changes associated to atomic layer deposition (ALD) of SiO2 from 3-aminopropyl triethoxysilane (APTES) and O3, on a nanoporous alumina structure, obtained by two-step electrochemical anodization in oxalic acid electrolyte (Ox sample) are analysed. A reduction of 16% in pore size for the Ox sample, used as support, was determined by SEM analysis after its coverage by a SiO2 layer (Ox+SiO2 sample), independently of APTES or O3 modification (Ox+SiO2/APTES and Ox+SiO2/APTES/O3 samples). Chemical surface modification was determined by X-ray photoelectron spectroscopy (XPS) technique during the different stages of the ALD process, and differences induced at the surface level on the Ox nanoporous alumina substrate seem to affect interfacial effects of both samples when they are in contact with an electrolyte solution according to electrochemical impedance spectroscopy (EIS) measurements, or their refraction index as determined by spectroscopic ellipsometry (SE) technique. However, no substantial differences in properties related to the nanoporous structure of anodic alumina (photoluminescent (PL) character or geometrical parameters) were observed between Ox+SiO2/APTES and Ox+SiO2/APTES/O3 samples.

9.
Nanomaterials (Basel) ; 8(8)2018 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-30081591

RESUMO

Controlling functional properties of matter and combining them for engineering a functional device is, nowadays, a common direction of the scientific community. For instance, heterogeneous magnetic nanostructures can make use of different types of geometrical and compositional modulations to achieve the control of the magnetization reversal along with the nano-entities and, thus, enable the fabrication of spintronic, magnetic data storage, and sensing devices, among others. In this work, diameter-modulated FeNi nanowires are fabricated paying special effort to obtain sharp transition regions between two segments of different diameters (from about 450 nm to 120 nm), enabling precise control over the magnetic behavior of the sample. Micromagnetic simulations performed on single bi-segmented nanowires predict a double step magnetization reversal where the wide segment magnetization switches near 16 kA/m through a vortex domain wall, while at 40 kA/m the magnetization of the narrow segment is reversed through a corkscrew-like mechanism. Finally, these results are confirmed with magneto-optic Kerr effect measurements at the transition of isolated bi-segmented nanowires. Furthermore, macroscopic vibrating sample magnetometry is used to demonstrate that the magnetic decoupling of nanowire segments is the main phenomenon occurring over the entire fabricated nanowires.

10.
Nanomaterials (Basel) ; 8(4)2018 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-29642476

RESUMO

In this article, the magnetic properties of hexagonally ordered antidot arrays made of Dy13Fe87 alloy are studied and compared with corresponding ones of continuous thin films with the same compositions and thicknesses, varying between 20 nm and 50 nm. Both samples, the continuous thin films and antidot arrays, were prepared by high vacuum e-beam evaporation of the alloy on the top-surface of glass and hexagonally self-ordered nanoporous alumina templates, which serve as substrates, respectively. By using a highly sensitive magneto-optical Kerr effect (MOKE) and vibrating sample magnetometer (VSM) measurements an interesting phenomenon has been observed, consisting in the easy magnetization axis transfer from a purely in-plane (INP) magnetic anisotropy to out-of-plane (OOP) magnetization. For the 30 nm film thickness we have measured the volume hysteresis loops by VSM with the easy magnetization axis lying along the OOP direction. Using magnetic force microscopy measurements (MFM), there is strong evidence to suggest that the formation of magnetic domains with OOP magnetization occurs in this sample. This phenomenon can be of high interest for the development of novel magnetic and magneto-optic perpendicular recording patterned media based on template-assisted deposition techniques.

11.
Nanomaterials (Basel) ; 8(2)2018 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-29473854

RESUMO

The influence of calcination time on the phase transformation and crystallization kinetics of anodized titania nanotube arrays was studied using in-situ isothermal and non-isothermal synchrotron radiation diffraction from room temperature to 900 °C. Anatase first crystallized at 400 °C, while rutile crystallized at 550 °C. Isothermal heating of the anodized titania nanotubes by an increase in the calcination time at 400, 450, 500, 550, 600, and 650 °C resulted in a slight reduction in anatase abundance, but an increase in the abundance of rutile because of an anatase-to-rutile transformation. The Avrami equation was used to model the titania crystallization mechanism and the Arrhenius equation was used to estimate the activation energies of the titania phase transformation. Activation energies of 22 (10) kJ/mol for the titanium-to-anatase transformation, and 207 (17) kJ/mol for the anatase-to-rutile transformation were estimated.

12.
ACS Appl Mater Interfaces ; 7(51): 28682-92, 2015 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-26646814

RESUMO

Pores growth mechanism and their self-ordering conditions are investigated for nanoporous alumina membranes synthesized by hard anodization (HA) of Al in a broad range of anodic conditions, covering oxalic acid electrolytes with concentrations from 0.300 M down to 0.075 M and potentiostatic anodization voltages between 120 and 225 V. The use of linear sweep voltammetry (LSV) and scanning and transmission electron microscopy, together with image analysis techniques allow one to characterize the intrinsic nature of the HA regime. HA of aluminum is explained on the basis of a phenomenological model taking into account the role of oxalate ions and their limited diffusion through alumina nanochannels from a bulk electrolyte. The depletion of oxalate ions at the bottom of the pores causes an increased growth of the alumina barrier layer at the oxide/electrolyte interface. Furthermore, an innovative method has been developed for the determination of the HA conditions leading to self-ordered pore growth in any given electrolyte, thus allowing one to extend the available range of interpore distances of the highly ordered hexagonal pore arrangement in a wide range of 240-507 nm, while keeping small pore diameters of 50-60 nm.

13.
Nanomaterials (Basel) ; 5(4): 2192-2202, 2015 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-28347115

RESUMO

Synthesis of a nanoporous alumina membrane (NPAM) by the two-step anodization method and its morphological and chemical surface characterization by analyzing Scanning Electron Microscopy (SEM) micrographs and X-Ray Photoelectron Spectroscopy (XPS) spectra is reported. Influence of electrical and diffusive effects on the NaCl transport across the membrane nanopores is determined from salt diffusion measurements performed with a wide range of NaCl concentrations, which allows the estimation of characteristic electrochemical membrane parameters such as the NaCl diffusion coefficient and the concentration of fixed charges in the membrane, by using an appropriated model and the membrane geometrical parameters (porosity and pore length). These results indicate a reduction of ~70% in the value of the NaCl diffusion coefficient through the membrane pores with respect to solution. The transport number of ions in the membrane pores (Na⁺ and Cl-, respectively) were determined from concentration potential measurements, and the effect of concentration-polarization at the membrane surfaces was also considered by comparing concentration potential values obtained with stirred solutions (550 rpm) and without stirring. From both kinds of results, a value higher than 0.05 M NaCl for the feed solution seems to be necessary to neglect the contribution of electrical interactions in the diffusive transport.

14.
Nanomaterials (Basel) ; 4(3): 700-711, 2014 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-28344242

RESUMO

Diffusive transport through nanoporous alumina membranes (NPAMs) produced by the two-step anodization method, with similar pore size but different porosity, is studied by analyzing membrane potential measured with NaCl solutions at different concentrations. Donnan exclusion of co-ions at the solution/membrane interface seem to exert a certain control on the diffusive transport of ions through NPAMs with low porosity, which might be reduced by coating the membrane surface with appropriated materials, as it is the case of SiO2. Our results also show the effect of concentration polarization at the membrane surface on ionic transport numbers (or diffusion coefficients) for low-porosity and high electrolyte affinity membranes, which could mask values of those characteristic electrochemical parameters.

15.
Nanoscale Res Lett ; 8(1): 263, 2013 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-23735184

RESUMO

Highly hexagonally ordered hard anodic aluminum oxide membranes, which have been modified by a thin cover layer of SiO2 deposited by atomic layer deposition method, were used as templates for the synthesis of electrodeposited magnetic Co-Ni nanowire arrays having diameters of around 180 to 200 nm and made of tens of segments with alternating compositions of Co54Ni46 and Co85Ni15. Each Co-Ni single segment has a mean length of around 290 nm for the Co54Ni46 alloy, whereas the length of the Co85Ni15 segments was around 430 nm. The composition and crystalline structure of each Co-Ni nanowire segment were determined by transmission electron microscopy and selected area electron diffraction techniques. The employed single-bath electrochemical nanowire growth method allows for tuning both the composition and crystalline structure of each individual Co-Ni segment. The room temperature magnetic behavior of the multisegmented Co-Ni nanowire arrays is also studied and correlated with their structural and morphological properties.

16.
ACS Appl Mater Interfaces ; 5(9): 3556-64, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23574388

RESUMO

Nanoporous anodic alumina membranes (NPAMs) were produced by the two-step anodization method in sulphuric, oxalic and phosphoric acidic electrolytes displaying a hexagonally ordered spatial arrangement of pores with well controlled nanopore size distribution and low porosity. Some selected NPAMs were further modified by conformal coating their surface and inner pore walls with a thin layer of SiO2 by means of atomic layer deposition (ALD), which reduces both the pore radii and porosity but it also seems to affect to the electric fixed charge on the membranes surface. A comparative study about the influence of silica modification of NPAMs surfaces on the ionic transport through the nanoporous membranes has been performed by measuring membrane potentials and electrochemical impedance spectroscopy with NaCl solutions. According to these results, a direct correlation between the membrane effective fixed charge and the NaCl diffusion coefficient can be established. The coating with a SiO2 thin layer causes a reduction of 75% in the positive effective fixed charge of the NPAMs independently of their pore radii and the increase in counterion transport (cation transport number and diffusion coefficient) even through constrained nanopores, which can be of interest in several applications (microfluidics, drug delivery, nanofilter devices, etc.). Moreover, slight changes in the membrane/solution interface due to the SiO2 cover layer are also indicated.


Assuntos
Óxido de Alumínio/química , Membranas Artificiais , Nanoporos , Dióxido de Silício/química , Transporte de Íons , Potenciais da Membrana , Propriedades de Superfície
17.
J Nanosci Nanotechnol ; 12(9): 7571-6, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23035519

RESUMO

The Morin transition (i.e., the first-order weak ferromagnetic (WF)/antiferromagnetic (AF) transition) in tridimensional (3D) nanoarchitectures constituted by self-organized hematite nanocrystals with controlled crystal size has been investigated. These intricate structures were prepared by the thermally induced hydrolysis of iron (III) solutions in presence of urea. The variation of the aging time from 1 hour up to 7 days leads to the formation of hematite crystal aggregates with crystallite sizes ranging between 7 and 42 nm. As the crystallite size decreases, it is observed that a superparamagnetic contribution, ascribed to the spins of the crystal surface, gains importance. This emergent contribution progressively hides the abrupt change of the magnetization associated to the Morin transition which, in turn, occurs at decreasing temperatures. The Morin transition found in the bigger particles exhibits thermal hysteresis. This fact has been tentatively explained by considering that in absence of crystal defects, the nucleation of the AF --> WF transition occurs in areas near to the outer spin layers, whereas the nucleation of the WF --> AF occurs in the inner of the crystal. In the outer spin layers, the AFM order is frustrated and therefore this transition is suppressed. In fact, the uncompensated surface spins can be magnetically coupled with the core spins at low temperatures when the sample is field cooled, inducing exchange anisotropy in the system.

18.
Anal Chem ; 83(1): 329-37, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21126061

RESUMO

Progress in the development of advanced materials strongly depends on continued efforts to miniaturizing their structures; thus, a great variety of nanostructured materials are being developed nowadays. Metallic nanowires are among the most attractive nanometer-sized materials because of their unique properties that may lead to applications as interconnectors in nanoelectronic, magnetic, chemical or biological sensors, and biotechnological labels among others. A simple method to develop self-ordered arrays of metallic nanowires is based on the use of nanoporous anodic alumina (NAA) and self-assembled nanotubular titanium dioxide membranes as templates. The chemical characterization of nanostructured materials is a key aspect for the synthesis optimization and the quality control of the manufacturing process. In this work, the analytical potential of pulsed radiofrequency glow discharge with detection by time-of-flight mass spectrometry (pulsed rf-GD-TOFMS) is investigated for depth profile analysis of self-assembled metallic nanostructures. Two types of nanostructured materials were successfully studied: self-assembled NAA templates filled with arrays of single metallic nanowires of Ni as well as arrays of multilayered Au/FeNi/Au and Au/Ni nanowires and nanotubular titanium dioxide templates filled with Ni nanowires, proving that pulsed rf-GD-TOFMS allows for fast and reliable depth profile analysis as well as for the detection of contaminants introduced during the synthesis process. Moreover, ion signal ratios between elemental and molecular species (e.g., (27)Al(+)/(16)O(+) and (27)Al(+)/(32)O(2)(+)) were utilized to obtain valuable information about the filling process and the presence of possible leaks in the system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...